

Agenda: Steering Committee Meeting

August 20, 2014

- TMDL and Clean-up Plan Process
- Working Group Reports
- Clean-up (Implementation) Plan Actions
 - Watershed Overview
 - >TMDL Review
 - >BMP Actions (Revised and New)
 - ➤ Staging Implementation and Milestones
 - > Technical Assistance
 - **>** Funding
- Project Timeline and Next steps

TMDL Study

TMDLs & Clean-up Plans

- Stressor Analysis
- ID pollutant sources
- Determine pollutant reductions

- Identify Best Management Practices (BMPs) to reduce pollutant levels
- Find \$\$\$ Sources

Aquatic Community

Healthy

Water quality standards not met

Aquatic Community

Unhealthy

Roanoke River Watershed TMDLs

TMDL Development in the Roanoke River Watershed:

- Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek, & Lick Run: Bacteria, 2004
- Roanoke River: Aquatic invertebrate community impairment (caused by sediment), 2006
- Wilson Creek, Ore Branch, Roanoke River watershed: Bacteria, 2006

Roanoke River Clean up Plan

- A "road map" to implement the sediment and bacteria reductions called for in the Total Maximum Daily Load (TMDL) studies
- ALL Clean-up Plans include:
- 1. Executive Summary
- 2. Introduction
- 3. State and Federal Requirements
- 4. Review of TMDL(s)
- 5. Public Participation
- 6. Implementation Actions

- 7. Measurable Goals & Milestones
- 8. Stakeholders' Roles & Responsibilities
- 9. Integration with Other Watershed Plans
- 10. Potential Funding Sources

Roanoke River Watershed Clean up Plan: Public Participation

Roanoke River Clean up Plan

- Public participation recap:
 - Clean up Plan Kick-off Meeting: 4/2013
 - Roanoke River Watershed
 Open House: 6/2013
 - Working Group Meetings:
 - Agricultural/Residential,
 Business: 2/2013 and 2/2014
 - Government: 8/2013 and 2/2014
 - Steering Committee: 11/2013 and 8/2014

Working Group Reports

- Agricultural/Residential
- Business
- Government

Adaptive Implementation Approach

Overarching Project Goal is to Design a Clean-up Plan including:

- Appropriate types and numbers of Best Management Practices designed to meet sediment and bacteria reduction goals called for in the Roanoke River watershed TMDL Reports
- Measurable Goals and Milestones for achieving water quality goals
- List and description of potential funding sources
- Meeting Goals: Discuss revised estimates of Best Management Practices by subwatershed that will result in reductions of bacteria and sediment loads to meet TMDLs.

Overview of the Watershed

NLCD 2006 Landuse

Roanoke River Watershed Allocations

TMDL Bacteria Reductions by Source										
Source	Back Creek	Carvin Creek	Glade Creek	Lick Run	Mason Creek	Mud Lick Creek, Murray Run, and Ore Branch	Peters Creek	Roanoke River 1	Roanoke River 2	Tinker Creek
Developed	98.9%	90.2%	96.3%	98.5%	98.9%	99.6%	98.9%	96.5%	98.2%	98.6%
Cropland	98.9%	0.0%	96.3%	0.0%	98.9%	99.6%	0.0%	96.5%	98.2%	99.8%
Pasture/Hay	98.9%	90.2%	96.3%	91.0%	98.9%	99.6%	98.9%	96.5%	98.2%	99.8%
Forest	98.9%	85.2%	91.5%	0.0%	98.9%	99.6%	98.9%	96.5%	98.2%	95.0%
Water/Wetlands	0.0%	85.2%	91.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	95.0%
Other	98.9%	90.2%	96.3%	0.0%	98.9%	99.6%	98.9%	96.5%	98.2%	98.0%
Livestock Direct	100.0%	100.0%	100.0%	0.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Wildlife Direct	64.5%	75.0%	70.0%	0.0%	65.1%	87.9%	53.7%	67.1%	66.0%	0.0%
Failing Septic Systems	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Roanoke River TMDL Sediment Reductions						
Landuse	Percent Reduction					
	Developed	75%				
	Cropland	75%				
	Pasture/Hay	75%				
Land Sources	Forest	75%				
	Water/Wetlands	0%				
	Other	75%				
Instream Erosion	-	75%				

Residential BMPs

Sewage Disposal

- Septic System Pump out (RB-1)
 - > 10% of All Septic Systems
- Sewer Connection (Targeted Areas and RB-2)
 - > Targeted Approach based on VDH consultation
- Repaired Septic System (RB-3)
- Septic System Installation/Replacement (RB-4)
- Alternative Waste Treatment System Installation (RB-5)
 - ➤ 5% of all failing septic systems

Residential BMPs

Pet Waste

- Pet Waste Stations
 - Focused on Parks, Trails and Pet Friendly Apartments and Hotels
 - Accounted for established Pet Waste Stations in Watersheds
- Educational Campaign

Proposed one campaign per subwatershed (increased price since last scenario)

Stormwater

- Rain gardens
- Vegetated Swales

Urban BMPs

Existing Stormwater BMPs

Accounted for installed BMPs at ½ normal efficiency

Stormwater Retrofits

- Infiltration Basin/Trench Retrofit
- Constructed Wetland Retrofit

New Stormwater BMPs

- Bioretention
- Rain Garden
- Infiltration Basin/Trench
- Manufactured BMP
- Constructed Wetland
- Detention Ponds

Urban BMPs

New Stormwater BMPs (continued)

- Riparian Buffer (Forested or Grass/Shrub)
- Street Sweeping
- Vegetated Swales

Agricultural BMPs

Livestock Exclusion and Manure Management

- CREP Livestock Exclusion (CRSL-6)
- Livestock Exclusion with Grazing Land Management (SL-6T)
- Small Acreage Grazing Systems (SL-6A)
- Livestock Exclusion with Riparian Buffers (LE-1T)
- Livestock Exclusion with Reduced Setback (LE-2T)
- Stream Protection/Fencing (WP-2T)
- Manure Storage (WP-4)

Agricultural BMPs

Pasture

- Vegetative Cover on Critical Areas (SL-11)
 - > 10-20% of Pastureland
- Reforestation of Erodible Pasture (FR-1)
 - > 5-10% of Pastureland
- Pasture Management (EQIP 528, SL-10T)
 - > Remainder of Pastureland
- Wet Detention Ponds
 - ➤ Applied if Pasture Reductions could not be met through other means

Agricultural BMPs

Cropland

- Continuous No-Till (SL-15)
- Small Grain Cover Crop (SL-8)
- Permanent Vegetative Cover on Cropland (SL-1)
- Sod Waterways (WP-3)

Revised Implementation Measures from Last Scenario

- Pet Waste Stations
 - Refined approach to more targeted areas rather than a per mile basis
 - Based on Parks, Trails, Pet Friendly Hotels, and Apartment Complexes
- Bioretention Drainage Areas
 - Reduced to 5 acres (previous drainage area too high)
- Costs of certain BMPs
- Urban Riparian Buffers
 - Refined approach using the NHD stream network, urban landuse and aerial photography (very much like the Livestock Exclusion Analysis)
- Reduction of proposed detention pond retrofits based on Karst topography data layer
 - Only six detention ponds intersecting layer were found (Lick Run)

New Implementation Measures from Last Scenario

Urban Landuse Conversion

➤ Proposed 1% of potential Urban Tree Canopy to be implemented per watershed

Permeable Pavers

Five units per subwatershed – expensive practice

Detention Ponds

➤ Ten units per subwatershed – not very effective at water quality but still a viable option

Vegetated Swales

> Ten units per subwatershed, not very effective at bacteria reduction

Rain Barrels

➤ 1% of houses per watershed to purchase rain barrels, average of two rain barrels per house.

New Implementation Measures from Last Scenario

Street Sweeping

- ➤ Roanoke County (creation)
 - Approximately 850 miles of road
 - Proposed to sweep half the length (425 miles)
 - Frequency of once per month
 - Removal of approximately 2,800 tons of sediment and 2.80 E+12 bacteria per year
- City of Roanoke (expansion)
 - Frequency increased on residential streets from an average of 3.2 cycles per year to 4 cycles per year
 - Frequency increased on arterial streets from an average of 12 cycles per year to 18 cycles per year
 - Net increase of approximately 2,165 tons of sediment and 4.77E+12 bacteria per year
- City of Salem (expansion)
 - Frequency increased: 12 cycles per year -> 18 cycles per year
 - Net increase of approximately 270 tons of sediment and 5.82E+11 bacteria per year

Glade Creek Subwatershed

Glade Creek Subwatershed - Residential

Glade Creek Residential Waste Treatment BMPs						
ВМР	Total Number of Systems	Cost per System	Total Cost			
Septic System Pumpout (RB-1)	597	\$300	\$179,100			
Sewer Connection (Targeted Areas and RB-2)	265	\$9,500	\$2,517,500			
Repaired Septic System (RB-3)	511	\$3,600	\$1,839,600			
Septic System Install/Replace (RB-4)	429	\$6,000	\$2,574,000			
Alternative Waste Treatment System (RB-5)	45	\$16,000	\$720,000			
		Total	\$7,830,200			

Glade Creek Pet Waste Programs					
		Cost			
BMP	Units	per	Total Cost		
		unit			
Educational Campaign	1	\$5,000	\$5,000		
Pet Waste Stations ¹	6	\$4,180	\$25,080		
		Total	\$30,080		
¹ Pet Waste Stations include cost for five years of bag/liner refills					

Glade Creek Subwatershed - Urban

Glade Creek Existing Detention Pond Retrofits					
		Total	Cost per acre		
BMP	Number	Acres-	acre	Total Cost	
		Treated	treated		
Infiltration Basin	22	421	\$6,000	\$2,526,000	
Constructed Wetland	31	577	\$2,900	\$1,673,300	
			Total	\$4 199 300	

Glade Creek Proposed Stormwater BMPs						
		Total	Cost per			
BMP	Number	Acres-	acre	Total Cost		
		Treated	treated			
Bioretention	177	885	\$10,000	\$8,850,000		
Raingarden	177	177	\$5,000	\$885,000		
Infiltration Trench	177	176	\$6,000	\$1,056,000		
Manufactured BMP	177	214	\$20,000	\$4,280,000		
Constructed Wetland	140	4013	\$2,900	\$11,637,700		
Detention Pond	10	196	\$3,800	\$744,800		
Permeable Paver	5	5	\$240,000	\$1,200,000		
Vegetated Swale	10	150	\$18,150	\$2,722,500		
Rain Barrel	245	6	\$150	\$900		
Riparian Buffer (Forested)	N/A	16	\$3,500	\$56,000		
Riparian Buffer (Grass/Shrub)	N/A	16	\$360	\$5,760		
	-		Total	\$31,438,660		

Glade Creek Subwatershed - Agricultural

Glade Creek Proposed Cropland BMPs					
ВМР	Acres	Cost per	Total Cost		
	Installed	acre	Total Cost		
Continuous No-Till (SL-15)	50	\$100	\$5,000		
Small Grain Cover Crop (SL-8)	45	\$30	\$1,350		
Permanent vegetative cover on cropland (SL-1)	3	\$175	\$525		
Sod Waterway (WP-3)	7	\$1,600	\$11,200		
Cropland Buffer/Field Borders (CP-33 & WQ-1)	3	\$600	\$1,800		
		Total	\$19,875		

Glade Creek Proposed Pasture BMPs					
BMP	Acre	Cost per	Total Cost		
BIVIF	Installed	acre	Total Cost		
Vegetative Cover on Critical Areas (SL-11)	724	\$1,200	\$868,800		
Reforestation of Erodible Pasture (FR-1)	402	\$560	\$225,120		
Pasture Management (EQIP 528, SL-10T)	3,618	\$75	\$271,350		
	\$1,365,270				

Glade Creek Subwatershed – Livestock

Glade Creek Proposed Livestock Exclusion Systems and Manure Management						
ВМР	Total Length of Proposed BMP (feet)	Average Length Per System (feet)	Systems	Cost Per System	Total Cost	
CREP Livestock Exclusion (CRSL-6)	10,204	2,551	4	\$27,000	\$108,000	
Livestock Exclusion with Grazing Land Management (SL-6T/LE-1T)	163,845	2,979	55	\$21,000	\$1,155,00 0	
Livestock Exclusion with Reduced Setback (LE-2T)	10,248	1,708	6	\$17,000	\$102,000	
Small Acreage Grazing System (SL-6AT)	8,937	2,979	3	\$9,000	\$27,000	
Stream Protection/Fencing (WP-2T)	11,984	5,992	2	\$21,000	\$42,000	
Manure Storage (WP-4) - Dairy	N/A	N/A	8	\$100,000	\$800,000	
Manure Storage (WP-4) - Beef	N/A	N/A	8	\$58,000	\$464,000	
Total						
*Total Length of Proposed Livestock Exclusion = 205,218 feet						

Glade Creek Subwatershed - Other

Glade Creek Planned and Proposed Stream Restoration						
Restoration (Feet)		Additional Proposed Stream Restoration (feet)	Cost (\$300/foot of Restoration)			
11,818	4,720	7,098	\$2,129,400			
*Total Stream Length in Watershed = 500,852 feet						

Proposed Urban Landuse Conversion based on Urban						
Tree Canopy (UTC) Layer						
Sum of UTC	1% of UTC	Total Cost				
Possible Area	Implemented	(\$3,500 per acre)				
(Acres)	(acres)	(\$3,500 per acre				
3,043	30	\$105,000				

Total cost of Glade Creek TMDL Implementation Plan = \$49,815,785

Next Steps

- Finalize BMPs
 - Please submit comments by Wednesday September 10th!
- Steering Committee meeting
 - Technical Assistance
 - Refine Timelines
 - Monitoring Plan
 - Funding Sources
 - Roles and Responsibilities
- Final Public Meeting and Draft Clean-up Plan
 - 30 day public comment period
- Final Clean-up Plan submittal to State Water Control Board & EPA

Contacts

Mary Dail, VA DEQ 3019 Peters Creek Road Roanoke, VA 24019

Phone: 540.562.6715

Email: Mary.Dail@deq.virginia.gov

Reports/presentations available at:

http://www.deq.virginia.gov/Programs/Water/WaterQual ityInformationTMDLs/TMDL/TMDLImplementation/T MDLImplementationProgress.aspx

The Louis Berger Group, Inc.

Nick Tatalovich (202) 303-2845

ntatalovich@louisberger.com